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TECHNIQUES FOR EXAMINING 

STATISTICAL AND POWER-SPECTRAL PROPERTIES 

OF RANDOM TIME HISTORIES* 

By Herbert A. Leybold 
Langley Research Center 

A technique i s  presented f o r  d i g i t a l l y  generating random time h i s to r i e s  
having any desired shaped power spectra. Four random time h i s to r i e s  having 
d i f fe ren t  s t a t i s t i c a l  and power-spectral properties have been generated and 
analyzed t o  determine t h e i r  instantaneous mean and amplitude d is t r ibu t ions .  In  
each, the  d is t r ibu t ion  of instantaneous means could be approximated by a normal 
o r  Gaussian d is t r ibu t ion  and the  d is t r ibu t ion  of instantaneous amplitudes could 
be approximated by the  sum of a Rayleigh d is t r ibu t ion  and a normal dis t r ibut ion.  
An attempt w a s  made t o  relate t h e  coeff ic ients  of t he  equations used t o  repre- 
sent t he  d is t r ibu t ions  of means and amplitudes t o  the  power-spectral properties 
of the  generated time h is tor ies .  Two of t he  coeff ic ients  could be related t o  
the  power-spectral properties of the  time h is tor ies .  The remaining two coeffi-  
c ients  were empirically determined since no apparent re la t ionship w a s  found 
between these coeff ic ients  and the  power-spectral properties of t he  generated 
random time h i s to r i e s .  

INTRODUCTION 

Many of the  loads encountered by a i r c r a f t  and missi les  a re  random i n  
nature and, consequently, a re  usually described s t a t i s t i c a l l y .  I n  order t o  
reduce the  mathematical complexity i n  u t i l i z i n g  such a description i n  analyzing 
the  response of s t ructures  t o  loads, most investigators have made simplifying 
assumptions about t he  s t a t i s t i c s  of the  random-load h is tory  ( r e f .  1). 
example, i.n fa t igue  s tudies  t h e  s t a t i s t i c s  of the load peaks a re  usually used. 
These s t a t i s t i c s  a re  obtainable e i the r  by actual ly  counting the  peak loads at  

the  peak load d is t r ibu t ion  t o  the  power spectrum of the  random load-time history. 
When programing fa t igue  t e s t s ,  all peak loads a re  usually applied about a com- 
mon mean load. I n  gene rd ,  t h i s  mean load is representative of the  overal l  mean 

*The information presented herein w a s  offered as a t h e s i s  i n  p a r t i a l  ful- 
f i l lment  of t he  requirements f o r  t h e  degree of Master of Science i n  Engineering 
Mechanics, Virginia Polytechnic Ins t i t u t e ,  Blacksburg, Virginia, May 1963. 

As an 

I various leve ls  or by a relat ionship developed by Rice ( r e f .  2) which r e l a t e s  



of the  random load-time h is tory  from which the  peak load d is t r ibu t ion  w a s  
derived. A variat ion i n  mean load can have an e f fec t  on fat igue l i f e  ( r e f .  3 ) .  
Thus, it appears t h a t  a s t a t i s t i c a l  description of both the  d is t r ibu t ion  of 
instantaneous mean loads (i .e. ,  average of two successive peak loads) and asso- 
ciated instantaneous amplitude d is t r ibu t ions  (i .e., difference between peak 
load and instantaneous mean load) would be more useful  than the peak load dis-  
t r i bu t ion  alone f o r  studying fat igue under random loading. 
mean load d is t r ibu t ions  and associated instantaneous amplitude d is t r ibu t ions  a re  
hereaf ter  referred t o  as simply the  mean and amplitude d is t r ibu t ions .  These 
d is t r ibu t ions  can be obtained by actual ly  counting the  instantaneous means and 
instantaneous amplitudes, but there  i s  no known relat ionship between these dis- 
t r ibu t ions  and the  power spectrum as  w a s  t he  case f o r  the  peak load 
dis t r ibu t ion .  

The instantaneous 

I n  the  present investigation, an attempt i s  made t o  develop an empirical 
re la t ionship between the  power-spectral properties of a given random time his-  
to ry  and the  mean and amplitude d is t r ibu t ions  of t h i s  time his tory.  This w a s  
done by d i g i t a l l y  generating four random time h i s to r i e s  with d i f fe ren t  power- 
spec t ra l  properties and counting the means and amplitudes i n  order t o  determine 
t h e i r  d i s t r ibu t ions  f o r  each of the  time h i s to r i e s  generated. Equations 
describing the mean and amplitude d is t r ibu t ions  a r e  developed and an attempt i s  
made t o  r e l a t e  the  coeff ic ients  of these equations t o  the  power-spectral prop- 
e r t i e s  
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of the  generated time h is tor ies .  

SYMBOLS 

amplitude of periodic function of time 

f i l t e r  f ac to r s  or Fourier coeff ic ients  

frequency-response function 

frequency, cps 

Nyquist or folding frequency, cps 

number of amplitudes counted i n  in t e rva l  y i  < - y 5 yi+,- 

number of amplitudes counted which exceed y = yi 

computed frequency of occurrence of amplitudes i n  interval  
< <  Y i  = Y = Y i * l  

number of times per second zero axis  i s  crossed with posi t ive slope 

number of posi t ive peaks per second 



" 

NR 
< 

z 

number of times per  second t h a t  value y i s  exceeded 

computed number of amplitudes which exceed y = yi 

constants of peak probabi l i ty  d is t r ibu t ions  

r a w  spec t ra l  density estimate 

number of amplitudes normally dis t r ibuted about specified mean value 

number of amplitudes d is t r ibu ted  according t o  Rayleigh d is t r ibu t ion  
about specified mean value 

number of posi t ive amplitudes about specified mean value 

normal probabi l i ty  

Rayleigh probabi l i ty  

probabi l i ty  t h a t  peak w i l l  exceed given value of y 

modified random number 

covariance function or autocorrelation function of continuous variable 

generated random number 

covariance o r  autocorrelation of d i scre te  s e t  of values 

time, sec 

uniform in t e rva l  of time, sec 

normal deviate 

f i l t e r e d  time h is tory  

d iscre te  s e t  of values obtained by sampling f i l t e r e d  time h is tory  
Y ( t )  a t  uniform in te rva ls  of time A t  

o r ig ina l  time h is tory  

d iscre te  s e t  of values obtained by sampling or ig ina l  time h is tory  
y ( t )  at  uniform in te rva ls  of time A t  

standard variable,  y/g. 

dummy variables  
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ON coeff ic ient  of normal probabi l i ty  

UR coeff ic ient  of Rayleigh probabili ty 

standard deviation o r  root-mean-square (rms) value of y ( t )  ay 

mean square value of y ( t )  u; 

mean square value of first der ivat ive of y ( t )  
2 
Y 

U. 

mean square value of second der ivat ive of y ( t )  2 U.. 
Y 

$( f )  power spec t ra l  density of a continuous variable 

smoothed spec t ra l  density estimate 

Matrix notations: 

CI square matrix 

column matrix 0 
A dot over a var iable  indicates  d i f fe ren t ia t ion  with respect t o  time. 

A bar  over a term indicates the  mean value of t h e  term. 

GENERATION OF RANDOM TIME HISTORIES 

A d i g i t a l  random time his tory having the  properties of band-limited white 

The output 
noise was generated and used as the input t o  several  l i n e a r  systems, each 
having s igni f icant ly  d i f fe ren t  frequency-response character is t ics .  
responses obtained were used t o  calculate power-spectral properties and a l so  t o  
obtain the  d is t r ibu t ions  of means and amplitudes. 

A br ie f  out l ine of the  procedures used t o  s i m u l a t e  d i g i t a l l y  random t i m e  
h i s to r i e s  having d i f fe ren t  shaped power spectra i s  as follows. A more detai led 
discussion of each of the  following steps w i l l  appear i n  subsequent paragraphs. 

1. Random numbers having a uniform probabi l i ty  d is t r ibu t ion  were generated. 
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2. The uniformly d is t r ibu ted  random numbers were then transformed in to  a 
normal o r  Gaussian d is t r ibu t ion  having a mean of zero and a variance of one. 
The numbers obtained were assumed t o  be samples taken at  1/2-sec in te rva ls  from 
a continuous record. A power spectrum w a s  calculated by using these numbers 
and w a s  found t o  be essent ia l ly  f l a t .  The normally d is t r ibu ted  numbers w i l l  be 
used as the  input t o  a l i n e a r  system. 

3 .  I n  order t o  determine the  frequency response of the  l i nea r  system the  
following equation w a s  used: 

1 

, 

where i s  t h e  power spectrum of the  normally d is t r ibu ted  numbers obtained 
i n  s tep 2 above and flout i s  the desired shaped power spectrum. Knowing both 
the  input and t h e  desired output power spectrums, t he  magnitude of the  f re -  

quency response 

din 

can be determined from the  above relationship.  IF@ I 
4. The frequency response w a s  then used t o  f i l t e r  the  input ( i . e . ,  the  

normally d is t r ibu ted  numbers) t o  the  l i nea r  system. 
u t i l i z i n g  the following equation: 

The f i l t e r i n g  w a s  done by 

where yi+K i s  the  input t o  the  system, aK represents the  f i l t e r  fac tors  

obtained by transforming the frequency response in to  the time domain, and 
i s  the output which. represents a random time h is tory  having the  desired shaped 
power spectrum. 

Y i  

5 .  Four time h i s t o r i e s  were generated i n  t h i s  manner. 
were calculated for each i n  order t o  insure t h a t  the  proper f i l t e r  factors  had 
been obtained. 

Power spectrums 

6. Once it w a s  determined t h a t  the calculated power spectrums were essen- 
t i a l l y  the  same as the  desired shaped power spectrums, t h e , d i g i t a l  random time 
h i s to r i e s  of s tep  5 were analyzed t o  determine t h e i r  instantaneous mean and 
amplitude d is t r ibu t ions .  4 

The procedure described can be used equally well f o r  d i g i t a l l y  simulating other 
random time h i s t o r i e s  having a r b i t r a r i l y  shaped power spectra. 
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RANDOM NUMBER GENERATOR 

Random numbers were obtained with a fixed-point pseudo random number gen- 
Each generated e ra tor  developed by the  National Bureau of Standards (ref. 4) .  

random number RN w a s  obtained from the  previous random number RN-1 by 
taking the  last 11 d i g i t s  of t he  product RORN, l  where R o  = 5l5 and 
N = 1, 2, 3 ,  . . .. Numbers were then selected a t  random from the  generated 
RN. Only the  first 6 d i g i t s  p of the randomly selected =-digit number were 
used i n  t h i s  investigation. Approximately 160 000 random numbers were selected 
i n  t h i s  manner each having an equally l i k e l y  chance of occurring ( i .e . ,  uniform 
probabi l i ty  d is t r ibu t ion) .  
or equal t o  zero but l e s s  than or equal t o  999 999. 

The s e t  of numbers obtained were a l l  grea te r  than 

TRANSFORMATION TO NORMAL DISTRIBUTION 

The random numbers were transformed in to  a normal d is t r ibu t ion  with mean 
equal t o  zero and uni t  variance by an approximate equation developed by Tukey. 
(See ref .  5.) This transformation was made i n  order t o  simulate a stationary,  
Gaussian random process. The transformation requires tha t  the  random numbers 
be between zero and one. Therefore, all numbers p were divided by 106 and 
designated q. Tukey's transformation i s  

where q i s  the  modified random number and X '  i s  the normal deviate.  It w a s  
found i n  t h i s  investigation t h a t  when X' became grea te r  than 2.4, there  were 
s ignif icant  departures from the normal d is t r ibu t ion .  Hence, it was necessary 
t o  use a corrected normal deviate X, as follows: 

x = X' 

X = X' + +(0.13)(Xf - 2.4) 
Ix I 

It should be noted t h a t  these equations r e s t r i c t  t he  normal deviates t o  the  
range -5.73 X 5 5.73 which i s  no great  handicap. 

A power spectrum w a s  calculated by using equations ( B l )  t o  (B3) and the 
first 40 000 normally d is t r ibu ted  random numbers Due t o  storage limita- 
t ions  i n  the  computer used, only 5000 numbers could be handled at one time. 
Therefore, 8 power spectra were calculated f o r  each of the  f i r s t  8 groups of 
3000 numbers generated. 
and varied only s l i g h t l y  from each other, indicating t h a t  the  sample s i z e  of 
5000 numbers was suf f ic ien t ly  large.  An average power spectrum w a s  obtained 

X. 

The 8 power spectra were found t o  be essent ia l ly  f l a t  

6 



from the  8 groups of numbers (white noise) and the  remaining properties were 
calculated based on t h i s  average spectrum. 

FILTERING OF RANDOM NUMBERS 

c 

The generated random numbers X, which when taken a t  d i scre te  uniform 
in te rva ls  of time define a time h is tory  having a f l a t  power spectrum, can be 
modified by numerical f i l t e r i n g  techniques i n  order t o  change t h e i r  amplitude 
response charac te r i s t ics  and thus change the  power spectrum of the  time history.  
The amplitude response charac te r i s t ics  can be changed by u t i l i z i n g  the input- 
output re la t ion  of power-spectral analysis, which s t a t e s  t h a t  the  product of 
the input power spectrum flin(f) and the  square of the  amplitude response 

(sometimes cal led a t r ans fe r  function) i s  equal t o  the  output power 

spectrum flout(f). ~ h u s ,  

The amplitude response can be determined from t h i s  equation since F(3 I 

where yi+K = 0 when i < M. The Fourier coeff ic ients  aK r e su l t  from the 
Fourier transform of the  amplitude response and the  generated random numbers X 
are  represented by yi%. 
Fourier cosine se r i e s  representation of the amplitude response a re  given i n  
appendix A. The four  amplitude response functions used i n  t h i s  investigation 
are  shown i n  f igure 1. The symbols show the shape of the response ac tua l ly  used 
t o  f i l t e r  the  random numbers whereas the  so l id  curve shows the  desired response. 
Twenty points were used t o  represent t h i s  response. These four amplitude 
response functions represent the  concepts of bandwidth-limited white noise, 
atmospheric turbulence phenomena, single-degree-of-freedom system, and a modi- 
f i e d  single-degree-of-freedom system (band pass) ,  respectively. 

Details f o r  determining the coeff ic ients  of the  

For brev i ty  the 
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f i l t e r e d  time h i s t o r i e s  obtained by using these response functions a re  referred 
t o  as time h i s to r i e s  A t o  D, respectively. S t a t i s t i c a l  samples showing the  
charac te r i s t ica l ly  d i f fe ren t  features  of the  four time h i s to r i e s  obtained i n  
t h i s  manner a re  shown i n  f igure 2. For c la r i ty ,  the  values of Y i  have not 
been p lo t ted  but ra ther  t he  curves f a i r ed  through these values. The increment 
of time i s  At  = 1/2 sec between values of Y i .  A s  a reference, 10 At  i s  
shown i n  f igure  2. 

For the  normally d is t r ibu ted  numbers a power spectrum w a s  calculated f o r  

The power spectra were obtained by averaging the  
each s e t  of f i l t e r e d  random numbers using equations (Bl) t o  (B3)  and the  first 
40 000 numbers i n  each s e t .  
power spectra of 8 groups of 5000 numbers. 
culated based on the  average power spectrum. 
order t o  determine whether the  f i l t e r e d  time h i s to r i e s  had power spectra 
equivalent t o  the specified or desired power spectra.  The calculated power 
spectra were equivalent, within small tolerances, t o  the  specified power 
spectra. 

Power-spectral properties were cal- 
This procedure was followed i n  

I n  calculating these power spectra, the  assumption was made t h a t  the f i l -  
te red  random numbers represented a sampling from a continuous time his tory 
y ( t )  a t  d i scre te  uniform in te rva ls  of time At = 1/2 sec which resulted i n  a 
d i scre te  s e t  of values Y i  when t = i At .  There i s  no l o s s  of information 
from t h i s  sampling i f  the time h is tory  
than the Nyquist or folding frequency fF  where 

y ( t )  contains no frequencies grea te r  

1 
2 At  

f F  = - ( 5 )  

The frequencies f, ( 2 f ~  f. f ) ,  (4fF k f ) ,  . . . cannot be distinguished i n  
any frequency representation of y ( t )  which i s  determined from the  values of 
y i .  Thus, frequencies grea te r  than fF  W i l l  appear t o  ?le i n  the  range 

0 5 f 5 fFm 
folded in to  the  range 
relat ions 

It i s  said then t h a t  a l l  the frequencies i n  y ( t )  have been 

0 5 f 5 fF. This folding property follows from the  

where 

i = 0, 1, 2, 3, . . . 

If frequencies higher than fF 
t o  contribute power or energy t o  the  lower frequencies which w i l l  r e su l t  i n  
errors  i n  the  power spectrum at  the  lower frequencies. 
matically eliminated by properly selecting the frequency range of t he  shaped 
output power spectrum. 

are  present i n  the  sampling, they w i l l  appear 

This s i tua t ion  w a s  auto- 

8 



POWER-SPECTRAL-DENSITY CHARACTERISTICS 

OF RANDOM TIME HISTORIES 

I n  using the power-spectral-density approach f o r  analyzing the  fluctua- 
t ions  of a random process it w i l l  be assumed t h a t  the  process i s  stationary 
(i.e.,  s t a t i s t i c a l  properties a re  invariant with time) and a l s o  Gaussian i n  

d is t r ibu t ion  function which describes the frequency content of the  time varia- 
t i o n  of a random disturbance For s ta t ionary processes, the  power spec- 

the  covariance o r  autocorrelation function R( 7). This re la t ionship i s  
expressed as a Fourier cosine transform p a i r  as follows ( r e f .  6): 

4 nature. The power spectrum o r  power spectral  density $(f)  i s  a frequency 

< trum $(f)  may be defined by the  relat ionship which ex i s t s  between $(f)  and 
y ( t ) .  

R( 7) COS 2XfT dT 

R ( T )  = som $ ( f ) C O S  2RfT d f  

The covariance function, which i s  the  mean value of the Product 
gives a measure of t he  correlat ion between values of 
i n t e rva l  T. Hence 

y( t )y( t+-r) ,  
y ( t )  separated by a time 

For the  special  case when T = 0 

R ( 0 )  = y ( t ) 2  = J m  $ ( f )  df = a2 
0 Y 

The function $(f)  may be regarded as the  contribution of any frequency f t o  
the  mean square of y ( t ) .  The square root of the mean square value i s  known as 
the  root mean square (rms) or standard deviation aY of y ( t ) .  

The derivatives of a Gaussian random process a re  required i n  order t o  
determine'the s t a t i s t i c s  of such quant i t ies  as the  number of times per  un i t  
time the  disturbance crosses the  axis  y ( t )  = 0, the  number of maxima of y ( t )  
per un i t  time, o r  t h e  number of times per un i t  time t h a t  t he  disturbance 
exceeds a value of y ( t )  = y i  where i = 1, 2, 3, . . . . The following rela-  
t ionships a re  t h e  ones developed by Rice ( r e f .  2) between the  derivatives of 
y ( t )  and the  power spec t ra l  density $( f ) :  

1 

4 

9 



and 

The relationships involving these derivatives i n  obtaining zero crossings, 
peaks, and l eve l  crossings a re  as follows. 

The number of times per second tha t  the  zero axis i s  crossed with a posi- 
t i v e  slope i s  

The number of posi t ive peaks per second i s  

1 aj; 
f P = - -  2Jr 09 

The number of times per second tha t  a value of y ( t )  = yi i s  exceeded is  

-YF 

4 
fy  = fo exp - 

(See r e f .  6 f o r  limits on yi. 

Another relationship involving the  derivatives of y ( t )  can be used t o  
obtain the probabili ty Pp(y) 
y ( t )  = yi. 
where z = yi/%. 

tha t  a peak w i l l  exceed a given value of 
The probabili ty i s  expressed i n  terms of a standard variable z 

The expression f o r  the  probabili ty of obtaining a peak greater  than y i  
i s  ( r e f .  7) 

2 f o  -- 
Pp(Y) = PN(2) K1 + - fp  e - P&)] 

where PN($) and PH($) a re  the  normal probabi l i t ies  t ha t  2- and z w i l l  

be exceeded; t ha t  i s  
K1 K2 

10 



where 

, 

o r  
\ 

Ki 

The previous relat ions are val id  only for a stat ionary random process 
which i s  Gaussian i n  nature. 
be found i n  references 6 and 8. For data-processing purposes, t he  operations 
representing these expressions are more conveniently expressed i n  other forms. 
Appendix B gives t h e  expressions which a re  i n  a form amenable t o  d i g i t a l  com- 
puting (eqs. (Bl) t o  ( B 6 ) ) .  

A more detai led discussion of t h i s  subject may 

ANALYSIS OF RANDOM TlME HISTORIES 

An attempt i s  made i n  the  present investigation t o  describe analyt ical ly  
t h e  dis t r ibut ions of instantaneous means and amplitudes of several  random t i m e  
h i s to r i e s  having d i f fe ren t  power-spectral properties and t o  develop relation- 
ships between these analyt ical  expressions and the  power-spectral properties 
of t he  random t i m e  h i s to r i e s  used. This w a s  done by analyzing four random t i m e  
h i s to r i e s  having d i f fe ren t  s t a t i s t i c a l  and power-spectral properties which were 
generated with t h e  aid of a d i g i t a l  computer. Some of t he  power-spectral prop- 
e r t i e s  of these t i m e  h i s to r i e s  have been calculated and are  given i n  table I. 
The dis t r ibut ions of instantaneous means and amplitudes were obtained by actu- 
a l l y  counting each mean and amplitude i n  the  t i m e  h i s tor ies .  The number of 
occurrences of each of these values is  l i s t e d  i n  tab les  I1 t o  V. A discussion 
i s  presented of t h e  dis t r ibut ions obtained by counting, t he  manner i n  which 
these dis t r ibut ions were described analytically,  and the  relationship between 
these dis t r ibut ions and t h e  power spectra of t he  various time h is tor ies .  7 

I The frequency dis t r ibut ions of t h e  means f o r  t h e  four t i m e  h i s to r i e s  inves- 
t iga ted  a re  plot ted i n  f igure 3 .  
dist r ibuted.  This normality w a s  checked by p lo t t ing  the  probabili ty of 
exceeding a given mean value on normal probabi l i ty  paper for each of t h e  t i m e  
h i s to r i e s  ( f ig .  4) .  A s  a first approximation t h e  means can be considered t o  be 
normally dis t r ibuted . 

A l l  four d i s t r ibu t ions  appear t o  be normally 

The frequency dis t r ibut ions of t h e  amplitudes f a  about specified means 
a re  tabulated i n  t ab le s  V I  t o  I X .  Only those dis t r ibut ions which were 

11 
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considered t o  have a suf f ic ien t  sample s i ze  t o  be representative have been 
plot ted i n  figures 5 t o  8. 
mately symmetrical. 
t i v e  depending on whether t h e  slope of t h e  l i n e  between successive peaks w a s  
posi t ive or negative. 
c a l  about the  zero mean. 

The posit ive and negative amplitudes are approxi- 
Amplitudes were considered t o  be e i the r  posi t ive o r  nega- 

The ‘amplitude d is t r ibu t ions  are approximately symmetri- 

and i s  

where 

f c 

NN 

NR 

PN 

PR 

An equation, s i m i l a r  t o  t he  one developed by Rice (ref.  2) f o r  determining 

sent t h e  dis t r ibut ions of t h e  amplitudes about any specified mean. The equa- 
t i o n  represents t he  sum of a normal d is t r ibu t ion  and a Rayleigh d is t r ibu t ion  

the  peak distribution, which gave t h e  best  f i t  t o  the  data w a s  found t o  repre- 9 

expressed mathematieally as follows: I: 

computed number of occurrences of amplitudes i n  range yi 5 y < = yi+l 

number of amplitudes normally dis t r ibuted 

number of amplitudes dis t r ibuted according t o  Rayleigh d is t r ibu t ion  

normal probabili ty which may be expressed by the  following expression: 

Rayleigh probabili ty which may be expressed by the  following 
expression: 

The general form f o r  equation (18) i s  a modification of t he  peak prob- 
P I  

/j Rayleigh dis t r ibut ion.  The coefficient oR i n  the  Rayleigh portion of t he  I 

equation i s  the  slope of t he  straight-l ine portion of the  curve obtained from 
a p lo t  of log of t he  cumulative frequency of amplitudes against t he  square of 

remained approximately constant, regardless of t he  mean value. The following 
relationship w a s  developed, by using a t r ia l  and e r ro r  procedure, 

a b i l i t y  d is t r ibu t ion  equation which i s  the  sum of a normal and a modified 

$ 
t he  amplitude f o r  any specified mean. It w a s  found t h a t  t h e  coefficient OR 3i 

i 
1 

i n  order t o  i 
I 
! r e l a t e  t he  coefficient uR t o  some of t he  power-spectral character is t ics  of a 

random time history: 

12 



where fo, fp, K1, and K2 are derivable from the  power spectrum of a random 
time h i  s tory . 

The coefficient CJN i n  the  normal portion of the  equation which gave the  
best  f i t  t o  the  data  w a s  found t o  be related t o  t h e  coefficient CJR as follows: 

$ 

The remaining coeff ic ients  i n  equation (18), namely NN and NR, were 
adjusted by a least-squares technique t o  give the  best  f i t  t o  t h e  data 
(eqs. ( C 3 )  and (C4)). 
but f o r  t h e  purpose of t h e  present paper they w i l l  be t rea ted  as being inde- 
pendent. The technique used i s  summarized i n  appendix C .  Since the  distribu- 
t i ons  of amplitudes are approximately symmetrical, only the  posit ive amplitudes 
were used t o  determine the  coefficients.  The number of posit ive amplitudes at 
a specified mean NT w a s  found t o  be related t o  the  coefficients NN and NR 
by the  following expression: 

These coefficients might have some physical significance 

which may be rewrit ten as follows: 

The r a t i o  of 
f a i r l y  constant f o r  means close t o  zero and becoming progressively s m a l l e r  f o r  
la rger  means. An attempt w a s  made t o  predict  t he  quantity NT by determining 
the  probabili ty of occurrence of t he  means and multiplying it by the  t o t a l  num- 
ber  of occurrences i n  the  time history.  Since it has already been established 

t h a t  i s  required i s  the  standard deviation of the  means. A relationship between 
the  standard deviation of the  means and the  power-spectral character is t ics  of a 
random t i m e  h i s tory  w a s  found but the  relationship w a s  not suf f ic ien t ly  accurate 
t o  predict  s m a l l  standard deviations - t ha t  is, t i m e  h i s to r i e s  C and D - and 
therefore not accurate enough t o  predict  NT. No apparent relationship w a s  
found between the  power-spectral character is t ics  of a random time his tory and 
t h e  coefficients NN and NR. 

NR/NT w a s  found t o  be a nonlinear function of t he  mean, being 

I t h a t  t he  probabili ty d is t r ibu t ion  of t he  means i s  approximately normal, a l l  

The coeff ic ients  derived t o  give the  best  f i t  t o  the  observed frequencies 
f o r  each of t h e  time h i s to r i e s  investigated are presented i n  tab le  X. The 



computed frequencies based on these coefficients are given i n  tab les  V I  t o  I X ,  
and the observed frequencies are a l so  given f o r  comparison. 
observed frequencies (open symbols) and the  computed frequencies ( so l id  symbols) 
a re  plot ted i n  f igures  5 t o  8. 

I n  addition, t h e  

I n  the  present paper, a s t r i c t l y  empirical approach w a s  taken. An equa- 
t i o n  was f i t t e d  t o  the  data using a least-squares technique and two variables, 
namely, NN and NR. Possibly a b e t t e r  fit could be achieved by adjusting 
the  four coefficients uN, uR, NN, and NR simultaneously with a least- 
squares procedure. However, a s t r i c t l y  analyt ical  approach would be more 
desirable.  
ca l ly  since the  expression f o r  amplitudes developed i n  t h i s  paper i s  quite 
s i m i l a r  t o  t he  expression f o r  peaks developed by Rice ( r e f .  2). 
a def in i te  relationship ex is t s  between the  peaks and the  means and amplitudes. 

It i s  most probable t h a t  an expression could be derived analyti-  

I n  addition, 

CONCLUSIONS 

Four random time h i s to r i e s  with s ignif icant ly  d i f fe ren t  s t a t i s t i c a l  and 
power-spectral properties have been generated with the  a id  of a d i g i t a l  com- 
puter. The s t a t i s t i c s  of t he  means and amplitudes as w e l l  as the  power-spectral 
character is t ics  have been obtained f o r  each time history.  
clusions have been drawn from an analysis of t he  data obtained: 

The following con- 

1. The frequency dis t r ibut ions of t he  means are, i n  f irst  approximation, 
normally dis t r ibuted and symmetrical about a mean of zero. 

2. The frequency dis t r ibut ions of t he  posit ive (or negative) amplitudes 
for a specified mean can be described by the  sum of a Raylefgh and a normal 
dis t r ibut ion.  
metrical. These dis t r ibut ions a re  also approximately symmetrical about a mean 
of zero. 

The posi t ive and negative dis t r ibut ions are approximately sym- 

3 .  The standard deviations of both the  normal and Rayleigh dis t r ibut ions 
representing the  frequency dis t r ibut ions of t he  amplitudes a re  essent ia l ly  
constant over t he  en t i r e  range of mean values and can be approximated from the  
power-spectral character is t ics  of t he  time h is tor ies .  

4. The coefficients NN and NR i n  the  general equation defining the  
d is t r ibu t ion  of amplitudes have been obtained empirically but no apparent rela- 
t ionship between these coefficients and the  power-spectral properties of t h e  
time h i s to r i e s  has been found. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 3, 1964. 
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APPENDIX A 

DETERMINATION OF COEFFICIENTS OF A FOURIER COSINE SERIES 

REPRESENTATION OF FREQUENCY-RESPONSE FUNCTION 

Consider the  continuous periodic function of time, amplitude A, and f re -  
I quency f, such t h a t  

y ( t )  = A COS aft 

If t h i s  function of time is  sampled a t  d i scre te  time in te rva ls  At, the  con- 
tinuous t i m e  h i s tory  i s  replaced by a d iscre te  set of values 
y ( t )  when t = i At  and undefined i n  between. Thus, 

y i  equal t o  

y ( t )  = yi = A cos 25rfi At ( t  = i A t )  

1 When A t  = - 
XF’ 

f yi = A cos i 5 r  - 
f F 

The above time h is tory  can be modified t o  change i t s  frequency character- 
i s t i c s  (i.e., numerically f i l t e r e d )  as  follows: 

M 

where 

Y i  f i l t e r e d  time his tory 

or ig ina l  time h is tory  
’i +K 

a K  f i l t e r  fac tors  o r  coeff ic ients  

M 

Equation (A2)  represents, i n  numerical form, the  passage of an input s ignal  
y ( t )  through some l i n e a r  system which r e su l t s  i n  an output s ignal  Y ( t ) .  Upon 
subst i tut ing yi from equation ( ~ l )  f o r  yi+K i n  equation ( A 2 ) ,  

number of points used t o  approximate the  amplitude response 
i 

cos ‘II f i  - K )  + a K  cos 5r ai + 
f F f F 

f 

K = l  



APPENDIX A 

Where aK = a-K 

Yi = A  COS YC 

K=l 

/ M \ 

v 
The term i n  parentheses i s  i n  the  form of a Fourier cosine ser ies .  It i s  

necessary therefore t o  represent the  amplitude response function 

i n  the  form of a Fourier cosine ser ies  i n  order t o  f i l t e r  the  generated time 
his tory.  Therefore l e t  

IF($) I 
f h  
fF 
- = -  

where h = 0, 1, 2, . . . H, then 

H 

where 

U s i n g  t he  trapezoidal rule  of numerical integrat ion 

@K} = [,,, * 9 [IT] {Fh] 

where 

. 
1 
2 
- 
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APPENDIX B 

EXPRESSIONS USED FOR DIGITAL COMPUTING 

Given a t i m e  h is tory y ( t ) ,  d igi t ized at discrete  uniform t i m e  in ter-  
vals At, and assuming t h a t  t h e  or igin of t i m e  occurs at one of these inter-  
vals, then 

t = i A t  

I where i = 0, 1, 2, . . . N and 

The covariance o r  autocorrelation function sha l l  be defined as a quan- 
t i t y  Rp where 

( p  = 0, 1, 2, . . . M = 60)  (Bl) 

Equation (Bl) i s  t h e  numerical integration of equation (7). 

The power spec t ra l  density i s  the  Fourier cosine transform of the  covar- 
iance function Rp. For convenience it is  obtained i n  two steps. The prelim- 
inary s tep  gives estimates of t h e  r a w  spectral  density Lh, and t h e  f i n a l  s tep  
gives estimates of t he  smoothed spectral  density Estimates of spectral  
density a re  termed r a w  when they are  obtained from the  covariance function Rp 
by Fourier cosine series transformation and smoothed when hanned (operation of 
smoothing with w e i g h t s  1/4, 1/2, 1/4) from the  r a w  estimates (ref. 9) .  
smoothing operation pa r t i a l ly  accounts f o r  the  f a c t  t ha t  a f i n i t e  sample rather  
than an i n f i n i t e  sample w a s  used when taking the  Fourier transform. 
as many estimates as there  are terms i n  Rp, t h a t  is, M. The r a w  spec- 
t r a l  density estimates are given by the  matrix equation: 

h. 

The 

There are 

0 1 0  

0 0 1  

1 



APPENDIX B 

where h i s  used t o  represent a frequency 

h h f h  = E f F  =-  
2 M  A t  

and 

p = h = 0 , 1 ,  2 , .  . . M = 6 0  
The smoothed spec t ra l  density estimates a re  given by the  matrix equation d 

2 2 0 .  ' r  

1 2 1  

(&)=$[ ; ; J;. 033) 

The mean square of' y ( t )  and i t s  derivatives a re  defined as  follows: 

h 1 afh = - = - 
2 M  At 2M At 

where 

18 



APPENDIX c 

LEAST-SQUARES TECHNIQUE FOR Dl3T-ING 

THE COEFFICIENTS NR AND NN 

The equation chosen t o  represent the  frequency d is t r ibu t ion  of amplitudes 
7 about a specified mean is 

where f C  
Y i  5 Y 5 Y i + l '  I n  order t o  f a c i l i t a t e  computation of the  number of occurrences 
of amplitudes i n  the  range y >  yi, fyi i s  computed first. The desired value 

f c  can then be computed from the following relation: 

is  the  computed number of occurrences of amplitudes i n  the range 

Thus, 

where 

where $(x) = Error function 

! The following approximation, obtained from reference 10, w a s  used t o  f a c i l i t a t e  
computation of the  e r ror  function $(x) i n  the computer: 

1 B(x> = 1 - . .  , .  - 
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where 

APPENDIX c 

a1 = 0.278393 

a2 = 0.230389 

a3 = 0.000972 

a4 = 0.078108 

The least-squares technique involves minimizing with respect t o  each of the  
undetermined coeff ic ients  the sum of the  differences squared between the  
ac tua l  and calculated number of times a value y = yi is  exceeded - t h a t  is, 

~ 

y ( f b  - fyi)2. Since the coefficients q and CR have been previously 

determined t o  be constant it i s  only necessary t o  minimize with respect 
and NN. Thus, 

Solving these two simultaneous l i n e a r  equations f o r  NN and NR gives 

00 03 00 W 1 p N ( y I ) ] 2  1 f aPR(Yi )  
i=o  i=o  i =O i = O  

1 pR(yi)pN(yi) 1 fapN(yi) 

-~ NR = 

t o  NR 

I , 

faPR(yi) pR(yi)pN(yi) - f a P N ( Y i )  [IP.(yi]' 
i =o i =o i = O  i = O  

9 
L 

pR(yi)pN(yi) - pN(yi] * [PR(yig [lo I i=o  i =o 
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2 
Q. Y 
2 
6.. Y 

f0 

fP 

'O/fP 

K1 

K2 

TABLE I 

POWER-SPECTRAL-DEITY CHARACTERISTICS OF THE 
R' 

FOUR RANDOM TIME HISTORIES 

. ~. 

Time his tory 

B 

1.0017 

.6489 

1.4698 

.1280 

2395 

5344 

.8452 

1.5816 

D 

0 9915 

2.6216 

8.9284 

2599 

2937 

.8849 

.4658 

.5264 
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74 
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30 
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22 

20 

15 

2 
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TABLE II 

F'REFBnncY OF OCCURRENCE OF INZCWPANEOUS MEANS AND IilSTARIX'IEOUS AMPLITUDES FOR TIME HISTORY A 
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Figure 1.- Amplitude responses employed i n  f i l t e r i n g .  Curves represent the  desired 
response; symbols represent t h e  response obtained using Fourier coefficients.  
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Figure 2.- Samples of t he  four time h i s t o r i e s  obtained by f i l t e r i n g .  
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